Combat Sports, Programming Geoffrey Chiu Combat Sports, Programming Geoffrey Chiu

Combat Sports Strength and Conditioning - Microcycle & Within-Session Programming [Part 2 of Programming Layers Series]

In part 2 of this article series, we’ll discuss principles and training methodologies that can be used to optimize combat sports training within-session and within the week.

Shared from Lightroom mobile (5).jpg

Given the complexities of combat sports performance, strength and conditioning programming must match the demands of the training environment by being adaptable and holistic. In order to achieve this, programming must consider all layers and timelines of training.

Programming and training periodization happens on 4 time scales (or layers) - Within session, on the microcyclic scale, mesocyclic scale and the macrocyclic scale. Each layer can be considered the lenses of which the S&C coach views training and physical preparation and must be planned accordingly.

In this article, we’ll discuss several strategies and philosophies I use when preparing combat sport athletes, which layers they can be utilized in and how a better understanding of programming can help us more effectively coach high performance combat sport athletes.

Some of the concepts I talk about will be familiar to those who have read my eBook “The Strength & Conditioning Handbook for Combat Sports”, while others maybe new to some of you.

In part 2 (this part), we will discuss the specifics week to week and day to day programming (higher resolution view).

Read PART 1 on Macrocyclic and Mesocyclic Training Here


the microcyclic layer

Programming on the microcyclic layer is concerned with optimizing training on the weekly level. Given the amount of sessions in a combat sports athletes’ schedule, we must consolidate them by avoiding any interference effects and create systems that can manage training stressors more consistently. Here are some guiding principles and strategies that you’ll find in my S&C programs.

High/low structure

I use a high/low structure to guide the initial parts of my program planning; a system popularized by track coach Charlie Francis to categorize running intensity and it’s affect on speed adaptations.

“High” training days consists of training modalities that require a large amount of neuromuscular-activation, a large energy expenditure and/or a high cognitive load - all stimuli that require a relatively longer period of full recovery (48-72 hours). Conversely, “low” training days are less neurally, bioenergetically and mentally demanding, requiring a relatively shorter period of full recovery (~24 hours).

Adapted to the world of combat sports, all training modalities, from sparring, technique work, heavy bag training to weight room sessions can all be categorized into high and low. This allows us to visualize the training and recovery demands of sessions throughout a full week of training.

Ideally, we would schedule training so that we alternate high and low training days so that the athlete is adequately rested for the most demanding sessions, but the reality of the fight game makes this challenging in practice. Some sessions, on paper, fall in between high and low categories in terms of physiological load. Regardless, using a high/low structure is a great start to help manage training stress within a week of training.

Condensed conjugate method

First of all, the conjugate method (CM), originally created for powerlifting performance by Louie Simmons of Westside Barbell uses Max Effort (close to 1RM lifting), Dynamic Effort (low % of 1RM performed in high-velocity fashion and Repetition Effort (moderate % of 1RM performed for ~8-15 reps) all within a training week. The CM is based on a concurrent system (I discussed this in part 1, where training aims to develop several physical qualities within a shorter time frame - week and month).

The first time hearing of the condensed conjugate method (CMM) was from Phil Daru, S&C coach to several elite combat sport athletes out in Florida, USA who adapted the CM method to fit the tighter training schedule of fighters.

What is originally a 4-day split (CM) is condensed into 2 days (CMM). This is what the general structure/training split looks like within a week.

Day 1:
Lower Body Dynamic Effort
Upper Body Max Effort
Repetition Effort Focusing On Weaknesses

Day 2:
Upper Body Dynamic Effort
Lower Body Max Effort
Repetition Effort Focusing On Weaknesses

Max effort and dynamic effort training are both performed on the same day, however, to mitigate neuromuscular fatigue, they are rotated based on upper body and lower body lifts. If upper body compound lifts like heavy presses and rows are performed that day (max effort), bounds and jumps will be trained for the lower body to avoid excessive overload.

Similar to most concurrent-based training splits, a large benefit comes from the fact that movements are trained within the whole spectrum of the force-velocity curve (see figure below). Max effort training improves the body’s ability to create maximum amounts of force - grinding strength, while dynamic effort trains the body to be able to produce force at a faster rate - explosive strength/strength. Repetition effort is then used to target weak points and to create structural adaptations like muscle hypertrophy and joint robustness.

 
FV Curve in Condensed Conjugate.png
 

The CMM also shares some of the drawbacks of concurrent-based training set-ups. Single athletic qualities progress slower since multiple are being developed at the same time, however, this is only a minor issue considering the mixed demands of many combat sports. Certain modifications can be made to the template or perhaps block periodization can be utilized (see Part 1 of the article) if working with athletes that are clearly force-deficient or velocity-deficient (see the next section on velocity-split). Nonetheless, a pragmatic way to organize both high-velocity and slow-velocity exercises within a training week. I’ve had success implementing this type of training split in my combat sports S&C programs.

Velocity-split

Sticking with the theme of a concurrent-based system within the training week, another way to set up a microcycle is using a velocity-split. For example, in a 2-day training split, high-velocity exercises and low-velocity exercises would be trained separately.

Day 1:
Upper Body Plyometrics & Ballistics
Lower Body Plyometrics & Ballistics
Speed-Strength Exercises (Loaded throws, Olympic Lift deratives, Kettlebell swings, etc)

Day 2:
Upper Body Max Strength Lifts
Lower Body Max Strength Lifts
Repetition Effort Training (70-85% of 1RM)
Isolation Exercises

With concurrent training, we risk pulling an athlete’s physiology in opposite directions. This is avoided by grouping similar stressors together within each training day, throughout the week.

Additionally, this can be used to isolate high- or low-velocity training in order to target the weaknesses within an athlete’s force-velocity profile. Using the example split above, Day 2 would play a more important role in the training of a force-deficient athlete while Day 1 would be more effective for velocity-deficient athletes. We are still training both ends of the spectrum within a week but manipulate the training volume, and therefore emphasizing certain aspects of the training stimuli, to fit the needs of the athlete’s physical profile.


WITHIN-SESSION PROGRAMMING

When training multiple physical qualities within a workout, it is important to perform exercises in an order that optimizes training adaptations and reduces the detrimental effects of neuromuscular fatigue. An effective training session will always start with a comprehensive warm-up routine, raising overall body temperature, warming up the muscles and joints, as well as “waking up” the nervous system so the athlete is ready for the work ahead. After that, we need a set of principles to guide how we will structure our training order.

principle of fatigability

Simply put, exercises that require higher neuromuscular output and physical readiness are more susceptible to performance detriments due to fatigue. These exercises are better performed at the beginning of a training session (after warm-ups) when the athlete is fresh and has all of their physical and mental resources. Max effort, max intent modalities like intensive plyometrics, high effort compound lifts and ballistics all fall under this category.

Contrastingly, exercises that require a lesser degree of neuromuscular output like accessory lifts, isolation lifts and stability training can be trained at the end of a session with little to no detrimental effects on training adaptations. If we use this principle to guide exercise order, this is what a typical concurrent power and strength training session might look like:

 
Exercise+Sequencing.png
 

The same principle can be used if we were train both martial arts and S&C within the same day. Because of the importance of skills training, I would schedule it first. Pre-fatigue can be a tool to improve skill retention and transfer, but in most cases, only hampers skill acquisition and development by making it harder for combat athletes to participate in high quality, deliberate training.

PRIORITY

Prioritization is an exception to the principle of fatigability. An athlete should first perform exercises that are most important to their primary training goal (if they one that is clear-cut). Going back to our athlete is differing athletic profiles, a force-deficient athlete should focus on high-force producing exercises first thing in each training session in order to reap in the most training benefits. Likewise, a velocity-deficient athlete should perform high-velocity exercises before slower movements (the outcome is in line with the principle of fatigability but for different reasons).

Post-activation potentiation and contrast training

Post-activation-potentiation (PAP) is a phenomenon where rate of force development (RFD)/power is increased due to previous near-maximum neuromuscular excitations. This is another exception to the principles of priority and fatigability, whereby the athlete will deliberately perform heavy compound lifts first even if RFD/power is the primary goal.

I’ve written an article about this topic of within-session planning, covering these principles more in-depth. If you’d like to learn more, read “Exercise Order - Principles For Sequencing A Training Session”.


WRAPPING IT UP

Whenever I create an S&C program for combat sport athletes, I’m always considering all 4 layers of programming. Some of the specific methods I use like type of training-split or the type of volume/intensity undulating I use will change based on the athlete I’m working with, however, most of the governing philosophies (on the macrocyclic level - see Part 1) stay more or less the same.

It’s important for S&C coaches to adapt to information given in front of us, not be limited by scientific dogma, but at the same time, be willing to change and improve our philosophies over time. Since combat sports is a growing industry, so is S&C for combat sports. We must navigate through performance training with nuance.

The learning doesn’t stop there. Here are some combat sports S&C articles that will help you along the way.


 

FREE EBOOK CHAPTER DOWNLOAD

Chapter 7 of the eBook, “The Sport-Specific Trap - Revisiting Dynamic Correspondence for Combat Sports” talks about key concepts to consider when selecting exercises to enhance combat sports performance and some common mistakes coaches make.

Read More
Combat Sports, Training Thoughts Geoffrey Chiu Combat Sports, Training Thoughts Geoffrey Chiu

Training Session Structure, Single Leg Explosiveness and High/Low Training - Combat Sports S&C Q&A #1

This week’s questions and answers session covers topics such as training session structure, single leg training for power and explosiveness as well as high/low training categorization.

These questions were taken from my Instagram Story Q&A (@gcptraining). Alongside answering questions on Instagram, I will pick the best 3 questions related to combat sports S&C and discuss them in-depth. Some of these questions were asked by followers and readers of my newest ebook “The Strength & Conditioning Handbook for Combat Sports”.


Question #1 - What is your philosophy on the structuring of a training session?

The overarching goal behind structuring a training session is to optimize the training adaptations from each exercise within the given session.

First things first, any strength and conditioning training session for a combat sport athlete will start off with a warm-up. I utilize a “RAMP” warm up, the main goal is to raise body temperature, activate muscles, mobilize the joints and potentiate the athlete’s neuromuscular system system to reach the intensities seen in the training session.

The second order of training involves performing exercises that have require a high neuromuscular demand. These are usually high-velocity or high-force output exercises like plyometric jumps and medicine ball slams or heavy compound lifts. The reason why these are performed first is because these training modalities are more susceptible to performance detriments due to fatigued. In other words, athletes will not be able to reap in the benefits of plyometric and max-strength training if those exercises are placed near the end of the session.

Followed by this, are accessory exercises that are single-jointed or aimed at smaller muscle groups. Their relatively low technical and neuromuscular demands means their effectiveness will not be diminished to the same degree with the onset of fatigue.

Conditioning, depending on the type, will usually be placed at the end of the session.

Here is an example of a full body MMA workout (performed descending order) following these training session structure principles:

RAMP Warm Up (Mobility flow, FRC, Core training, Bodyweight Jumps)
DB Weighted Plyometric Jump
Plyometric Push-Ups
Banded Zercher Squats
Barbell Overhead Press
Cossack Squats + Rotating Lower Back Extension Superset
Banded Rear Delt Flies + Bicep Curl Superset
Aerobic Power Intervals
Cooldown

There are some nuances to structuring a training session however, especially if you’re using methods like post-activation-potentiation or if you’re prioritizing certain power, strength or structural training qualities. I’ve written an in-depth article “Exercise Order - Principle for Sequencing A Training Session”. In this article, I also detail the principles of fatigability and prioritization to help you navigate training session programming. Check it out.

Question #2 - How do you develop single leg or staggered stance explosivity?

Single leg power is first built on a base of bilateral strength and unilateral stability. Before chasing power and explosivity in split or staggered stance movements, ensure that you have spent time building up your strength through squat, deadlift and split squat variations.

Moving forward, some of my favorite exercises for combat sport athletes include lateral bounding exercises, staggered stance kettlebell swings and staggered stance trapbar deadlifts (links included).

The reason I prefer these exercises is because of their ability to transfer over to both striking and grappling performance.

Lateral bounding variations develops lower body power in a way that compliments the in-and-out and angle changing agility demands of striking sports.

Staggered stance variations like kettlebell swings and trapbar deadlifts develops all of the strength and power qualities similar to it’s even-stance counterpart but puts extra emphasis on the back leg. By overloading the back foot and hip, it can possibly enhance force production in back-foot-driven grappling and striking movements such as shooting the double leg takedown or the power-straight and rear power-kick.

Question #3 - What happens if MMA workouts fall in between the high/low categorization of training you’re talking about in ebook?

Many training sessions or training days in reality will fall in between high and low. When this happens, I tend to side on the conservative side and count them as high.

The high/low categorization I mention in my ebook is simply a tool used to help us better understand and balance training stress throughout a training week. The important thing is to consider the training volume and intensity of each training session, the associated recovery cost, and how it will affect performance on subsequent training sessions or the next training day.

If you have a hunch a particular training session or class incurs much more stress than you originally thought, take some readiness data post-training and track fatigue markers like muscle soreness or nervous system readiness through jump or grip testing.

Remember, nothing in the chaotic world of combat sports training is set in stone. It’s great to have a framework to guide you, but this does not replace trial and error and constant refining of the training and planning process.

ipadvertical_634x861-9.png
 

FREE EBOOK CHAPTER DOWNLOAD!

Chapter 7 of the eBook, “The Sport-Specific Trap - Revisiting Dynamic Correspondence for Combat Sports” talks about key concepts to consider when selecting exercises to enhance combat sports performance and some common mistakes coaches make.

Read More
Combat Sports Geoffrey Chiu Combat Sports Geoffrey Chiu

MMA Strength & Conditioning - Experts ROUNDTABLE

With the pride, fame, and money that comes with prize-fighting, it's extremely important for strength and conditioning coaches to ensure the fighters are in top physical condition come fight night - the fighters' health depend on it.Strength and conditioning work must be balanced with martial arts skills training and psychological performance and therefore presents a complex problem for performance coaches to solve. Luckily there are professionals in the field to do just that - create strong and healthy athletes to elevate the sport of MMA.

gsp.jpg

Mixed martial arts (MMA) is one of the newest professional sports around and has been gaining a lot of popularity over the last two decades. With the pride, fame, and money that comes with prize-fighting, it's extremely important for strength and conditioning coaches to ensure the fighters are in top physical condition come fight night - the fighters' health depend on it.

Strength and conditioning work must be balanced with martial arts skills training and psychological performance and therefore presents a complex problem for performance coaches to solve. Luckily there are professionals in the field to do just that - create strong and healthy athletes to elevate the sport of MMA.

Before we start, I'd like to give a special thanks to all the coaches that spent time to contribute to this article. Thank you PJ, Phil, Carmen, Danny and Dr. Galpin. My goal was to reach out to coaches from different areas of expertise to compile a list of performance tips to help both the fitness and MMA community become more educated on the physical preparation process. Enjoy!


Geoff's Commentary: PJ Nestler will be starting this article off by dispelling the myths about strength training in the sport of MMA and how strength training can set the foundation for other physical attributes.

PJ Nestler

PJ Nestler is a performance specialist with a decade of experience training athletes from the UFC, NHL, NFL and MLB. With a passion for combat sports, he has worked extensively with multiple Brazilian Jiu-Jitsu World Champions like Otávio Souza and Ranked UFC fighters like Kailin Curran and Pat Cummins.

As a speaker, presenter and training consultant for multiple organizations, PJ shares his best tips for combat sports training on his own Facebook page.

MMA Training Mistake: Lack of Strength Training

The myths behind strength training are endless. “Heavy lifting makes you tight”, “Lifting heavy weights makes you slow”, “too much muscle will make you gas out quicker” are some of the commonly perpetuated myths plaguing the combat sports community.

Since I could address each in their own full articles, for the sake of brevity I will just state that these claims are completely misguided, proven to be incorrect in hundreds of studies as well as decades of practical experience with coaches in the field improving athletic performance. Most are either completely fabricated (the tightness or gassing out myths), or are based on cherry picking research that is so esoteric to 99.99% of MMA fighters, just to sound contradictory or support unconventional and ineffective training methods, that all of this information only serves to further confuse the fighters who need it most.

The Solution

Strength is the underlying foundation upon which all other athletic abilities are built. Speed, balance, endurance, power, quickness, agility, coordination, all require specific levels of strength to reach a baseline performance as well as optimum levels. The word strength gets misconstrued with thoughts of 1 rep max squatting or deadlifting, and athletes typically don’t understand what true athletic based strength training looks like, and how much it can expand their physical abilities. Proper strength training will lead to improvements in all the above-mentioned motor qualities, aid in performance during strength based exchanges like grappling, improve operational outputs that will allow fighters to perform sport specific skills with greater power, speed, and duration, and will significantly reduce the incidence of injuries sustained in training.

Progressive overload of foundational movement patterns is one of the simplest, most well researched and practiced methods for improving athletic performance in existence. That is why it has been used at the highest level of sport for decades. This does not mean strength is the only important factor, and meathead coaches who love to crush athletes under the barbell are only fueling the fire from disbelieving fighters and skill coaches. There are many other necessary components of a well-structured performance training program, but proper strength training will always be the foundation that will keep fighters healthy, their bodies performing properly, and builds the motor qualities that will maximize their athletic potential.


Geoff's Commentary: Expanding on PJ's thoughts, Phil Daru details the why's and how's of strength training, specifically how to set up a strength training block to optimize performance and reduce injury rates.

Phil Daru (ACE, FMS, CFSC)

Phil "Bam Bam" Daru is a former professional MMA fighter and has competed in Strongman, bodybuilding and powerlifting. Holding an Exercise Science and Sports Medicine degree, he is now the Director of Sport Performance at American Top Team. Phil has worked with the likes of Joanna Jedrzejczyk, Tyron Woodley, Amanda Nunes, King Mo Lawal, Dustin Poirier and many more combat athletes.

For more information on Online Programming/Coaching and bookings for seminars, visit him at www.Darustrong.com

The Why's and How's of Strength Development

Let me start off by stating that with any program there must be structured plan, a method and system that will facilitate growth. Without a plan, yes you plan to fail. So before we talk about strength in MMA we must make sure all keys to victory are set up to be worked accordingly to induce the greatest amount of success possible. Working on your technical skill is very important. These are the specific techniques and tactical drills that a fighter must show competence in to become a good fighter. Working on all aspects of the sport is the priority, you must create a hierarchy of modalities that you will need to put into place for maximum performance. Once this is in place and your drilling and technical practice has been set then we must get STRONG.

Strength first and foremost cannot be achieved without properly assessing movement capabilities of a fighter. If they have dysfunction, we must take care of the issue first before even thinking about putting external load on the body. Once all joints are mobile and stable in their given areas that's when the fun starts. When working with a fighter I must identify their weaknesses and strengths. What's their style of fighting, and what is their training background. When this is established, I find out when the competition is, then put together a solid strength training program to initiate progress.

The Structure of Strength Training

Depending on how long I have, I will start the camp with a structured block of hypertrophy and joint integrity training phase. This will include slow eccentric movement exercises and higher volume sets. Eccentric strength and plyometric exercises are used to prime their joints for high impact collisions that they will be experiencing in skills training (sparring, grappling). After a few weeks of that, we then go onto a strength block phase where we are trying to push the envelope of maximal strength output. Working primarily in the 85-90% of 1 rep max range with sets of 3-5 repetitions. All exercises will focus on 5 major movement qualities, a squat, hip hinge, push, pull, a carry, and core work. With these exercises, we cover all aspects of physical preparation with a general to specific periodization model.

In the beginning of the strength phase, we are working more on overall work capacity and movement efficiency. At the end of the strength phase, the focus becomes more specific to the sport. So exercises we choose will have a higher carryover to the physiological demands of the sport. For instance a Zercher Squat, Med Ball Double Under Carry, & DB Hip Bridge Floor Press will carry over well into the competition from a physical preparation standpoint.

A solid strength program should have two objectives in mind, get the athlete physically capable to train at a high level, and develop superior biomechanical and physiological capabilities over the opponent. Stick to basic multi joint movements at first like Back/Front Squat, Barbell Deadlift, Overhead Press, Sled Push/Pull, and Planks. Once the foundation of strength optimally met then we can move on to the specificity of sport exercises. Don't get caught up in trying to do what you see on social media do what needs to be done to help that athlete become better. Solid multi-joint movement exercises with stabilization techniques will get a fighter strong and capable to withstand load and impact.

We all should strive to become a stronger version of ourselves. Strength is not easy to develop but if all things are lined up and programmed properly then it can most definitely be done. Dominate your opponent and reduce injury while getting STRONG!


Geoffrey Chiu (BKin, NSCA-CSCS)

I don't have the same experience in the trenches in comparison to these coaches I look up to, however, I still have a undying passion for MMA and the field of strength & conditioning. My goal is to get people thinking more critically about training, periodization, nutrition, and at the end of the day, make a positive impact in the sport.

Visit me on my Facebook page and Instagram page where I post training footage, tips and weekly Q&As.

Bio Picture.png

Thoughtful Exercise Selection

Building on Phil's knowledge on training structure and exercise selection, I wanted to talk about a mistake some coaches make: selecting overly-specific exercises in hopes of directly improving punching and kicking power, takedown strength, etc. Any MMA coach will tell you striking and grappling proficiency is built on the mitts or on the mats, not in the weight room.

As performance coaches, especially those who may have limited experience in the martial arts, we will do our athletes a disservice by trying to mimic and inappropriately load sport-specific movements in the weight room. Incorrectly holding a dumbbell while punching, or performing band-resisted kicks can alter the biomechanics of the movement, rendering any transfer effect to sport-specific performance obsolete. Banded punches and kicks if used, must be light enough where the quality of technique is retained but at the same time, be challenging for the athlete.  

I'm also big believer that physical preparation should be injury-reductive in nature, while exercise selection aimed to improve strength, power or plyometric ability are individually catered towards the athletic profile of the MMA fighter. Are they primarily a striker, if so, what type of striking style do they use? Do they excel mainly as a powerful grappler, or an enduring, grinding wrestler? Do they have any hand, shoulder or hip injuries/limitations that may compromise exercise selection? These are all questions that should be asked when choosing exercises in a periodized plan. While the goal should be to improve their performance measures in the gym, it should not be done so at the expense of their sport-specific training.

In addition to a proper warm up like band pull-aparts for the shoulders or banded lateral shuffles for the hip, include injury-reductive exercises like decceleration drills and various concentric-focused or eccentric-focused plyometrics that improve the athlete's ability to absorb force and to increase knee and ankle resilience.

Instead of weighted punches/kicks, prescribe Olympic lifting variations, multiplanar medicine ball exercises, and exercises that improve core stiffness for better power transfer.

Instead of randomly timed tire flip circuits, box jumps and battle rope drills, utilize Zercher squats, foot-strength-focused plyometric drills and striking pad work intervals that reflect the energy systems used in a fight.


Geoff's Commentary: Many mentally tough athletes like MMA fighters feel uneasy about taking breaks and have a "no pain - no gain" mentality. However, it can't be stressed how important recovery is. Recovery times between sets and between training sessions have a significant impact on the adaptations that are being made as well as the mental and physical health of an athlete. Carmen Bott gives us information about the time periods of each recovery process.

CARMEN BOTT (MSc., BHK, CSCS)

Carmen Bott is an internationally renowned sport scientist and performance coach. She has been in the fitness training industry for over 20 years, focusing on strength coaching for combative and collision sport athletes.

She has recently put out an E-Book titled "The Wrestler's Edge: Complete Strength & Conditioning Program For Wrestlers". A complete strength & conditioning plan for some of the toughest athletes on earth.

The Details of Recovery Time

Encourage hard days followed by easy days, balanced nutrition following hard sparring and long rest periods between speed work if the goal is, in fact, to improve speed/alactic power.

The aim of this information is to give you knowledge about how long it takes to restore the body to a baseline state again.   

When we look at recovery from a metabolic system standpoint, we are looking at specifically replenishing energy stores and recycling lactate back to stored fuel.

Geoff's Commentary: What is the adaptation we are seeking to make with the athlete? Are we trying to improve aerobic and anaerobic capacity? - Side with shorter, submaximal recovery times between sets.
Are we trying to improve speed and top end power output? - Utilize longer, maximal recovery times ensure peak power output is maintained from set to set. 
Build in easy mobility and recovery days following hard sparring sessions and pay extra attention to recovery as the fight nears.


Geoff's Commentary: Weight cutting not only affects a fighter's performance, but puts their brain and bodily health on the line. Thus, preaching safe and effective weight cutting methods is both a personal and professional responsibility of a coach or nutritionist. Danny Lennon outlines a relatively uncommon, but safe way for athletes to cut weight for a fight.

Danny Lennon (MsC. NUTRI. SCI.)

Danny Lennon is a performance nutritionist to professional MMA fighters, boxers and competitive powerlifters. He is also the founder of Sigma Nutrition and the host of the Sigma Nutrition Podcast where he interviews top experts around the world to discuss everything fitness, training and nutrition related.

Check out the Sigma Weight Cutting System, a scientific approach to making weight and fueling performance for combative sport athletes. 

Cutting Fiber To Make Weight

There are several practices that can be used in a successful weight cutting strategy. Some of these are common knowledge amongst combat sport athletes (e.g. water restriction and induced sweating). However, there are a couple of excellent methods of achieving acute weight loss, without the potential for performance decreases, that I believe many athletes are unaware of. 

One of these is the use of a short-term low-residue diet. This is something I use with every one of my athletes who are making weight. Quite simply, when we eat certain foods, particularly those high in fiber, a certain amount remains undigested in the intestine and hangs around for a few days. This "residue" of course has weight. So if we can reduce how much is contained in our intestine at a particular time, we can acutely drop bodyweight. 

The use of a low-residue or low-fibre diet, is common practice in medicine when a patient is preparing for a colonoscopy or even as a treatment for IBS. This simply is the reduction of fibre into the diet to very low levels. So out go wholegrain products, vegetables, and high-fibre fruits. In the scientific literature we see a bodyweight drop of anywhere between 1 - 2%, even after only a few days of a low-residue diet, depending on the person's habitual fibre intake.

So combat sport athletes can drop 1% of BW reliably through this practice. And in contrast to dehydration and glycogen depletion, there is zero risk of a negative impact on performance. Of course, water loss and glycogen loss are still used in my Sigma Weight Cutting protocol, but through use of smart tactics like low residue dieting, we can decrease the amount of the weight cut that has to come via water loss. Therefore making it a bit more bearable, but more importantly, decreasing the risk of poor performance on fight night. 


Geoff's Commentary: While the overuse of technology has not hit the sport of MMA by storm yet, it's nice to always remind ourselves that technology is a simply a tool in the toolbox, never a magic bullet. The best cryotherapy machine is only as good as it's context of use, the best high-altitude training chambers is only as good as the details of a periodized energy system development plan. Dr. Andy Galpin will expand on the use of technology in sports, and give a more detailed example.

ANDY-GALPIN-FEAT-450x600-e1429710887708.jpg

dr. Andy Galpin (phd, cscs*d, nsca-cpt*d)

Dr. Andy Galpin is a professor at the Center of Sport Performance at CSU Fullerton and is the director of the Biochemistry and Molecular Exercise Physiology Lab. He has worked and consulted some of the best combat sport athletes in the world, from Olympic gold medalist freestyle wrestler Helen Maroulis to Top UFC featherweight Dennis Bermudez, as well as various MMA athletes.

Check out the Dr. Galpin and his co-authors Brian Mackenzie and Phil White's latest book titled "Unplugged: Evolve from Technology to Upgrade Your Fitness, Performance & Consiousness". 

Use Technology to Cue, Calibrate and Create Independent Problem Solving

The latest generation of fitness trackers promise to be an all-in-one solution, offering everything from accelerometers that monitor our movement to altimeters that measure our altitude gains to blood oxygen sensors that supposedly help us identify sleep apnea. Yet in reality there is no tech-based magic bullet, no matter what marketers and publicists might want us to believe.

Instead of buying into such lofty claims, we should follow the advice that Tim Ferris gave me and my co-authors Brian Mackenzie and Phil White in our new book Unplugged: “Use the least technology necessary, not the most you think you can handle.” What Tim is suggesting is not that we should gather our devices, build a bonfire and ritualistically burn them before retreating into the woods. Rather, his point is that we should use technology purposefully, intentionally and with restraint to solve a specific problem, increase insight and connect the dots between what we’re feeling, what’s going on with our physiology and our performance outcomes.

One way to do this is for a coach to utilize tech appropriately as part of their teaching process with an athlete. The first step is to identify the problem and its effects. So let’s say an athlete is landing on their heels when they jump and run and as a result they’re making mechanical errors that compromise speed and power and could lead to injury. One way to use a simple piece of technology here would be to deploy the Shoe Cue, which is a piece of plastic with little knobs on the top that such an athlete could easily place into the heels of their shoes at the start of a training session.

When they jump or run and land on their heels, they’ll get immediate and somewhat painful feedback. You could then remind them to instead land on the balls of their feet and lightly tap their heels to the ground. This could be repeated through several running and jump rope drills, after which you’d ask the athlete to remove the Shoe Cue inserts. You’d then repeat the drills and hopefully they would’ve stopped landing on their heels and instead started landing softly on the forefoot area. Now they can use their newly attuned self-awareness for the rest of the session. As the coach, you could repeat this sequence – first using the Shoe Cue to highlight or exaggerate the heel-striking issue and encourage a certain solution, then removing the technology and having the athlete use their elevated instincts to improve the movement pattern.

This is just one simple example of how you can use fitness tech to overcome a specific issue as a cueing and re-calibrating tool that leads to improved and more self-reliant problem solving, not as the crutch that it can sometimes become. For more examples, check out Unplugged on Amazon. If you have questions, suggestions or comments, I’d also welcome the chance to continue the conversation on Instagram (@drandygalpin) or Twitter (@DrAndyGalpin). And yeah, I get the irony of a tech-aided discussion!

Geoff Commentary: In MMA, technology can be as simple as a tennis ball under the chin to remind fighters to keep their chin tucked, to complex devices like the Hykso punch intensity and velocity trackers. With so many skills, movement patterns, different training sessions and nutrition to balance, MMA fighters are already swarmed with information. As coaches, it is our job to ensure only the necessary pieces of technology are used - avoid the fluff and focus on principles and consistency.

ipadvertical_634x861-9.png
 

FREE EBOOK CHAPTER DOWNLOAD

Chapter 7 of the eBook, “The Sport-Specific Trap - Revisiting Dynamic Correspondence for Combat Sports” talks about key concepts to consider when selecting exercises to enhance combat sports performance and some common mistakes coaches make.

Read More
Combat Sports Geoffrey Chiu Combat Sports Geoffrey Chiu

MMA Strength and Conditioning: Endurance and Energy System Training for MMA (Part 2)

In this series, I talk about everything related to strength & conditioning and training in the sport of MMA.

WRITE BETTER PROGRAMS WITH THIS FREE CHAPTER

Chapter 7 of the eBook, “The Sport-Specific Trap - Revisiting Dynamic Correspondence for Combat Sports” talks about key concepts to consider when selecting exercises to enhance combat sports performance and some common mistakes coaches make.

read PART 1 here

Part 2: endurance and metabolic demands of mma

In this part of the series, I will give you guys an overview of the body's energy systems, discuss the metabolic needs of an MMA fighter, and then lay out different training methods to improve endurance specific to MMA.


Energy system overview

Strikes, takedowns, grappling, submissions. A wide variety of physical capabilities and a diverse range of martial arts skills are required to excel in the sport of MMA. Don't forget the power and the endurance needed to pull off fight-finishing techniques or to last the whole duration of the fight. We are capable of all these movements thanks to our 3 energy systems: aerobic system, anaerobic system and alactic/phosphogen system. The intensity and duration of our movements is what dictates which energy systems are used, and which substrates are used to fuel that energy system. Each energy system takes a different substrate (fuel) to create energy molecules called ATP (energy currency of our body) that is then used to contract our muscles so we can move. As you can imagine, the energy demands of a sprinter and marathoner have completely different energy demands.

3 energy systems are used in the human body: Aerobic, Anaerobic and Alactic.

GCPT Energy System Overview

The AEROBIC system (also known as the oxidative system) is the slowest acting energy system in our body, yet it is capable of creating the most energy. At rest, around 65-70% of your energy comes from the utilization of fat, 25-30% comes from carbohydrates, while less than 5-10% comes from amino acids (protein). As intensity increases, these percentages shift - carbohydrates become more important because of its quicker availability in the body. That's why you need adequate blood sugar (carb) levels when exercising or doing intensive activity. The aerobic energy system is the predominant system involved in exercise lasting 2-3 minutes, to hours and even days. The aerobic system (aero meaning air) requires oxygen to utilize fat stores (body fat) and carbohydrate stores (in your muscles and liver). 

The ANAEROBIC system (aka the glycolytic system), is a faster acting system that can produce ATP even in the absence of oxygen. The downside to this faster ATP-production rate is that it can only breakdown carbohydrates as fuel and it creates a significant amount of lactate (commonly known as lactic acid). Lactate is correlated with exercise and performance fatigue, but the concept is often misinterpreted in the MMA and strength & conditioning world (more on this later). Exercise bouts of moderate to high intensities, lasting upwards to 2-3 minutes are mainly fueled by the anaerobic energy system.

The ALACTIC system (aka the phosphagen or phosphocreatine system) is the energy system capable of producing the most energy within the shortest amount of time. A fight-ending flurry or combination uses this energy system. The alactic system is different to the aerobic and anaerobic system in that it produces energy by directly breaking down the ATP molecule, bypassing the conversion of fats, carbohydrates or protein into ATP. However, our body has limited stores of ATP, therefore the alactic system is the quickest to fatigue and can only produce large bursts of energy for up to 10 seconds. Fully restoring phosphocreatine and ATP stores takes around 5-8 minutes; this restoration time can be influenced by strength & conditioning training, as well as the level of development of the aerobic and anaerobic system.

One misconception about energy systems is that each energy system completely turns on or off during various intensities and durations of exercise. Instead, all three energy systems contribute to energy production during all modalities and intensities of exercise. The relative contributions of each will depend on the velocity and force demands of the exercise bout or sport.

Another misconception is that the aerobic energy system is not used during mixed-type and pure anaerobic sports, when in reality the aerobic system can supply anywhere from 30 to 65% of the energy used in an exercise bout lasting up 2 minutes (800m running event for example). 


Endurance and metabolic demands of mma

Nick Diaz vs. Anderson Silva

Professional fights are 3 x 5 minute rounds with 1 minute rest in between rounds and Championship bouts are 5 x 5 minute rounds with 1 minute rest in between rounds. Amateur fights are slightly shorter, generally 3 x 3 minutes or less. A 15 minute or 25 minute fight then, requires a full spectrum of endurance capabilities. A respectable aerobic energy system must be developed to last the whole duration of the fight, while the short, repeated bursts of high-intensity action require a degree of anaerobic capacity and neuromuscular-alactic power.

It's widely known that fights often end before their allotted time limit, either via a knockout (KO) or technical knockout (TKO) by strikes, or by submission (SUB). This differs from other sports such as hockey or basketball where the players are required to play the whole length of the game. In MMA, fighters have the unique ability to control how long the fight lasts. This has huge implications on training strategies as well as damage and concussion mitigation. A fighter could technically never train their conditioning and achieve all their MMA wins by first round knockout... But... we all know that strategy does NOT work against equally-skilled opponents; even the most brutal knockout artists can be taken into deep waters. Professional MMA fighters must have the appropriate amount of conditioning to last at a minimum, 15 minutes. Failing to do so will prevent you from competing at the highest level of the sport.

Let's dive into the details.

MMA consists of intermittent bouts of high-intensity actions, followed by periods of moderate to low-intensity movement or disengagement. By compiling data from other combat sports, Lachlan et al (2016) categorized the metabolic demands based on 2 categories, grappling-based demands and striking-based demands.

Grappling-based sports like judo and wrestling appear to have a work-rest-ratio of approximately 3:1 with work phases lasting an average of 35 seconds, while striking-based sports like kickboxing and Muay Thai have a work-to-rest ratio ranging from 2:3 and 1:2, with work phases lasting around 7 seconds on average. MMA sits in-between these values, with a work-to-rest ratio between 1:2 and 1:4 with work phases lasting 6-14 seconds, which are then separated by low-intensity efforts of 15-36 seconds.

Work-to-rest ratios describe the amount of time exerting energy vs. the amount of the time disengaging and "taking the foot off the gas pedal". The more intense and long the work is, the more rest is needed to restore energy.

It should be noted that the structure of a typical professional MMA bout has a true work-to-complete rest ratio of 5:1 (5 minute rounds, 1 minute breaks), while the work-to-active rest ratio inside each 5 minute round is determined by the tactical strategies and the skill set of the MMA athletes. Fighters described as "grinders" such as Michael Bisping or Nick Diaz will display a much higher work-rest ratio than more "explosive" athletes like Jose Aldo or Tyron Woodley.

There is clearly a tradeoff between power/explosivity (lol Dada 5000) and the ability to perform optimally for the whole duration of the bout.

The best fighters in the world like Demetrious Johnson or GSP are not only in peak physical performance in terms of power and endurance, but have a high enough fight IQ to determine when to engage or disengage during a fight, when to perform a fight finishing flurry, or when to back off.


debunking conditioning myths in mma

"MMA matches only last 15-25 minutes, therefore high intensity interval training is the only way to improve endurance and conditioning"

The most common training mistake amongst fighters. In order to build elite level conditioning, fighters must have a solid aerobic base with a well-developed capacity for anaerobic efforts. As I mentioned earlier, the aerobic energy system is responsible for re-synthesizing ATP after periods of high intensity bursts, therefore influences how fighters recover in-between rounds AND in-between fighting exchanges. Since the aerobic system is developed through low-intensity cardio training, many coaches and fighters overlook this critical piece because it is, incorrectly, seen as inefficient. Oddly, fighters will perform an unnecessary amount of high intensity training along with their MMA training; a recipe for overtraining, sub-optimal recovery and increased risk of injury.

There are multiple contrasting studies on whether the addition of more frequent high intensity endurance training yielded any performance improvements. Some researchers found athletes that don't respond well to high volume low-intensity training showed greater improvements when they increased their frequency and volume of high intensity training. However on the contrary, the benefits of performing more high intensity training in already well-trained athletes, are limited.

What seems to be more important is the sparing use of these high intensity intervals outside of MMA training. By the way of training periodization, and the principle of specificity, the majority of the high intensity intervals should be performed few weeks out before the fight. Performing a high volume of high intensity training year round hinders a fighter's ability to improve their skills and stay injury-free.

Less is more sometimes.
 

"Being inefficient with your energy in the cage/octagon results in lactic acid build up in your muscles, causing a fighter to gas"

There's definitely some truth to this statement. When fighters "blow their wad" (a la Shane Carwin vs. Brock Lesnar), they're unable to recover, even with the 1 minute break in-between rounds. Why?

During moderate to high intensities, lactic acid and hydrogen ions begin to accumulate as the supply of oxygen does not match the demands of the working muscles - this is the byproduct of the anaerobic energy system. However, another byproduct of this energy system is lactate (mistakenly called lactic acid by the general population). Lactate is closely correlated with fatigue, however: correlation does not imply causation. Lactate is the 4th type of fuel that can be used to restore energy, primarily happening within the mitochondria of cells - the same location aerobic metabolism takes place.

Another common myth is that lactate doesn't form until you perform high-intensity exercises. Lactate actually forms even during lower intensity exercise (because the anaerobic system is still active to a degree). The amount of lactate produced is very minimal; we are able to shuttle this lactate into our mitochondria via the Cori-Cycle and effectively reuse it as energy. During the later round of a intense brawl however, the rate of lactate clearance simply cannot match the rate of which it is produced, this is called the lactate threshold. The figure below shows how lactate is recycled as energy after being produced as a by-product of fast glycoglysis (anaerobic metabolism).

The lactate threshold also represents the switch from using predominantly aerobic metabolism, to anaerobic metabolism. This is where the mental toughness and resilience of a fighter becomes more important. The fighters with the ability to push through the pain while maintaining their martial arts technique, will likely be the winner. In order to effectively delay the onset of muscular and mental fatigue, the goal of every fight should be to increase their lactate threshold.

While a well-developed aerobic base is needed, specifically training around lactate threshold is what will most effectively increase a fighter's ability to perform anaerobic work.
 

"That fighter has a lot of muscle mass and looks jacked, he will definitely gas out or probably has poor cardio!"

Holding a massive amount of muscle mass can negatively affect endurance, but not always. More often than not, jacked fighters possess poor conditioning due to a combination of poor energy utilization/strategy during fights, and neglecting lower intensity work in the off-season or fight camp. Fighters that put on muscle quickly most likely have focused too much of their time on hypertrophic training methods like heavy squats, deadlifts, presses, etc.

Each muscle is covered by capillaries that provide it blood and energy. Fighters that neglect endurance work crucial for increasing mitochondria density and capillarization of these muscles will have poor conditioning. Muscle mass and elite level conditioning are not mutually exclusive. Fighters who have focused on increasing muscle mass over the long-term while concurrently using training methods to increase capillarization will achieve the best results.

Fun fact: Yoel Romero (despite the blatant cheating) who looks like a Greek god, has 5 third round finishes in the UFC. Fans are quick to point the finger at jacked fighters and call them out for having poor conditioning when it's not always the case.


TRAINING variables & METHODS FOR IMPROVING ENDURANCE IN MMA

Training Variables

Conditioning work outside the MMA skills training revolves around the principles of intensity, volume and frequency.

Intensity represents how hard or how close to maximal effort one is working. Maximal heart rate, lactate threshold, rate of perceived exertion (RPE) and power output can all be used to gauge endurance training intensity. Prescription of low, moderate and high intensity workouts are based on a percentage of these baseline or max values. 

To make things simplier, intensity can be categorized into different training zones. In the chart below, training intensity zones are based off of a percentage of an athlete's maximal heart rate OR a percentage of their lactate threshold. Heart rate is well-known to have a linear relationship with exercise intensity, in that when workload or intensity increases, heart rate will also increase to supply the working muscles with blood. 

GCPT Heart Rate Zones

Since lactate threshold represents the switch from aerobic to anaerobic energy production, using an athlete's lactate threshold is a more accurate method of prescribing conditioning work. For amateur fighters that may not have the access to equipment necessary to measure lactate threshold, heart rate is the next best option.

Volume indicates how much total work is being put into endurance training. In sports like running, cycling and swimming, volume will be represented by the total distance travelled during training. In team sports and sports like MMA, training volume is measured by using the "time in zone" method. How much time per training day or training week are we spending in each training zone? This will give us an idea on how much rest an athlete needs, or whether we need to push them harder to achieve the level of conditioning we're seeking.

Lastly, frequency indicates how often we are performing endurance training. Specifically, how many times a week we use a specific training method.


Breaking Down The Training Zones

Low Intensity

Zone 1 is commonly called warm-up or active recovery. This intensity is not hard enough for any surmountable enudrance to be developed, but enough to promote blood flow and therefore recovery to the working muscles. Training in Zone 1 primarily uses fatty acids for energy production.

Zone 2 is called base endurance or extensive endurance training. This represents the lower limits of the aerobic energy system and still uses predominantly fat as fuel. Training in this zone will promote higher cardiac output (heart pumps more blood), as well as the capillizarization of muscle fibres I talked about earlier.

Zone 3 is called tempo training or intensive endurance training. This zone challenges the upper limits of the aerobic system. Lactate production starts to ramp up at this Zone, however, there is no significant accumulation as intensity is still relatively low and clearance levels are still high due to the adequate of supply of oxygen to the muscles.

Moderate Intensity

Zone 4 is called threshold training. As the name implies, this training zone occurs near an athlete's lactate threshold (95-105% of lactate threshold). This intensity cannot be held for long, as hydrogen ions begin to accumulate. For this reason, training in this zone will improve an athlete's tolerance to pain/the burning sensation and will directly increase their ability to produce force and energy during muscle and mental fatigue.

High Intensity

Zone 5 often called anaerobic or VO2 max training, is considered true high intensity training. Training in Zone 5 is responsible for increasing an athlete's ability to produce force in a metabolically acidic environment. Paired with the large amounts of perceived exertion, the duration of which this intensity can be held is severly limited compared to lower and moderate intensity training.


Time In Zone

As alluded to earlier, the time in zone method is used to assess training volume. These are training times specific to improving an MMA fighter's conditioning

Zone 1 (Active Recovery) - Any where from 30-60 minutes to promote blood flow, joint flexilibility, muscle recovery. Multiple times a week, pre or post MMA training.

Zone 2 (Base Endurance) - 45-90+ minutes to improve the lower end of the aerobic energy system, increase muscle capillarization, improve aerobic enzymes, etc. 3-4 times a week.

Zone 3 (Tempo) - 30-60+ minutes to improve the higher end of the aerobic energy system. 2-3 times a week.

Zone 4 (Threshold) - 20-40+ minutes to increase lactate threshold and increase tolerance to muscle and mental fatigue. 1-2 times a week.

Zone 5 (Anaerobic) - 10-20 minutes in the form of high intensity intervals (work rest, work rest, repeat) to improve top end work capacity and power. Work intervals in this zone can last anywhere from 10 seconds to 90 seconds. 1-2 times a week.


PRactical training methods

Example Max Heart Rate: 200 BPM
Example Lactate Threshold: 165 BPM

Because I know my own lactate threshold, I'm basing my training zones off of that number.

Improving The Aerobic Energy System (60 minute workout - Low Intensity)

General Workout - 60 minutes total in Zone 2

  • Freestyle Swimming (20 minutes @ 115-140 BPM) *I like to aim for the middle of these ranges

  • Versa Climber (20 minutes @ 115-140 BPM)

  • Stationary Bike (20 minutes @ 115-140 BPM)

MMA Specific Workout - 60 minutes total in Zone 2 and 3

  • Shadow Kickboxing (15 minutes @ Zone 3 (141-150 BPM))

  • Skip Rope (15 minutes @ Zone 2 (115-140 BPM))

  • Takedown/Sprawl Drills (15 minutes @ Zone 3)

  • Rowing Machine (15 minutes @ Zone 2)

In both workouts, I'm using the most underutilized form of low intensity training - low intensity circuits. Instead of picking only 1 modality, let's say running, we're able to change the stimulus and muscles worked by switching exercises every 15-20 minutes. As long as we keep our heart rate in Zone 2, aerobic adaptations will be made. If we to only choose running, the endurance of our shoulders and arms would be neglected - not ideal for an MMA fighter. 

The general workout is considered "general" because of it's lack of MMA-specific exercises. However, this is completely acceptable to do in the off-season. The MMA-specific workout can be utilized when a fighter comes closer to fight night. This shift from general to specific training is often seen in a well-designed, periodized training program.


Improving Lactate Threshold (30 minute workout - Moderate Intensity)

General Workout - 30 minutes total in Zone 4

  • Airdyne/Assault bike (10 minutes @ Zone 4 (156-173 BPM))

  • Active Rest - 2.5-5 minutes @ Zone 1-2

  • Versaclimber (10 minutes @ Zone 4)

  • Active Rest - 2.5-5 minutes @ Zone 1-2

  • Rowing Machine (10 minutes @ Zone 4)

MMA-Specific Workout - 30 minutes total in Zone 4

  • Heavybag Stand-up Work (10 minutes @ Zone 4 (156-173BPM))

  • Active Rest - 2.5-5 minutes @ Zone 1-2

  • Partner Grappling/Clinch Drills (10 minutes @ Zone 4)

  • Active Rest - 2.5 - 5 minutes @ Zone 1-2

  • Heavybag Ground n Pound (10 minutes @ Zone 4)

Threshold training can be done continuously, but because of the reasons stated above, I like switching it up and using a circuit style of training.

The name of the game here is pacing. It is easy to go a bit too hard on the heavybag or with grappling drills. Have a training partner monitor your heart rate so you stay in Zone 4.


Improving Top End Anaerobic Power (Multiple Intervals @ High Intensity)

General Workout

  • Hill Sprints or Prowler Push (4 x 20 second work: 2 minute complete rest) (1:6 work-rest ratio)

  • Active Rest - 5 minutes @ Zone 1-2

  • Airdyne/Assault Bike (4 x 60 second work: 2 minute complete rest) (1:2 work-rest ratio)

  • Cooldown - 5-10 minutes @ Zone 1

MMA-Specific Workout

  • Heavybag All-Out Combinations (4 x 20 second work: 2 minute complete rest) (1:6 work-rest ratio)

  • Active Rest , Footwork - 5 minutes @ Zone 1-2

  • Heavybag Takedowns into Ground n Pound (4 x 60 second work: 2 minute complete rest) (1:2 work-rest ratio)

  • Cooldown - 5-10 minutes @ Zone 1

A wide variety of exercises could be used here. Get creative with your general and MMA-specific drills. The focus here is to work at 85-100% of maximal effort, and getting in a few minutes of complete rest. Power, explosion and the ability to end fights quickly is built here.


Read More
Combat Sports Geoffrey Chiu Combat Sports Geoffrey Chiu

MMA Strength and Conditioning: The Role of S&C For MMA (Part 1: Introduction)

In this series, I talk about everything related to strength & conditioning and training in the sport of MMA.

Write better programs with this free chapter

Chapter 7 of the eBook, “The Sport-Specific Trap - Revisiting Dynamic Correspondence for Combat Sports” talks about key concepts to consider when selecting exercises to enhance combat sports performance and some common mistakes coaches make.

Introduction/Part 1

I spend a lot of time thinking about fitness, about strength & conditioning, about nutrition and about mixed martial arts (MMA). For those who don't know, MMA has been my favorite sport for the last 8 or so years. I love how raw the sport is, the amount of mental and physical preparation that goes into training and competing, as well as the movements and the culture itself. This series will not be as structured as I would like it to be, this is just a platform for me to elaborate on variables and methodologies I believe are crucial in creating a strength & conditioning program for fighters; some of which have been covered already, some of which, perhaps, haven’t been. I'll be providing sources and peer reviewed articles whenever necessary. With that said, lets dive into a brief history of martial arts and the creation of modern MMA. 


Brief History

Practiced as a form of competition and for close combat conflicts, martial arts have existed for thousands of years. Professional modern mixed martial arts (MMA) however, has been in the mainstream eye for only ~20 years. Compared to professional ice hockey and football leagues (created almost 100 years ago), it is safe to say that MMA is still a young sport.

MMA initially exploded onto the scene thanks to the Ultimate Fighting Championship and their earliest competitions, pitting martial artists against each other from different disciplines to find out which martial art reigns supreme. Royce Gracie and Brazilian Jiu Jitsu proved to be the most superior at UFC 1, the first ever MMA tournament held by the UFC. After the famous, The Ultimate Fighter Finale fight between Forrest Griffin vs. Stephan Bonnar, MMA started to gain traction in the mainstream media. However, MMA hasn't been received all that nicely by all demographics. And you know what, it'll never be, seeing 2 athletes punch each other in the face or put each other in submission holds aren't for everyone. To this day, critics call the sport "barbaric" and liken it to "human cock-fighting". Ironic, because boxing was also once looked down upon for its aggressive nature and violence. It was not until the mainstream media and spectators learned more about to sport that it started to be called the "sweet science".

Compared to other sports, MMA's skill ceiling is ridiculously high. The skills of MMA fighters have drastically improved thanks to more education in the sport, and the growing community of fighters and coaches.  We’re starting to see well-rounded martial artists and athletes and we're starting to witness techniques we used to see in old martial arts movie, like the karate-kid front kick, spinning heel kicks, and spinning elbows. 

With the growing popularity of MMA, I really hope the sport will be more appreciated in the years to come. 

Now, let's get down and dirty with the training side of things.

The Role of the Strength & Conditioning Coach

This is no longer the MMA of 1993, skills from many different disciplines of martial arts are needed to become a Top 3-5 fighter in any weight class. Strengths must be maintained and improved throughout a career, while weaknesses must be eliminated, or reduced enough to allow your strengths to shine. Positions, movement patterns, combinations and techniques that can be used in an MMA match are limitless.

Because of how novel strength & conditioning is in this sport, coaches are still trying to figure out the best exercises and training methodologies to build the best MMA athlete. Traditional endurance training modalities like running, or strength exercises like squats and power cleans may not always transfer well into the performance of a full contact athlete. The body types and skills in MMA differ greatly from fighter to fighter, there are no one-size-fit-all strength & conditioning protocols. Endurance and power drills must be tailored to the individual and must be prescribed in a way where it does not interfere with the skill acquisition of the athlete. A high performance coach must not forget that strength & conditioning training is only one piece of the puzzle. At the end of the day, MMA skills are the backbone of success in this sport.

The Goals of a S&C/Physical Preparation/High-Performance Coach:

1) Do not cause an injury to the athlete

2) Ensure the athletes physical attributes are peaked and tapered correctly going into a fight

3) Improve athlete-specific performance measures over time

4) Selectively pick exercises and training protocols that compliment the specific skill-set of the mixed martial artist

 

The Importance of Strength & Conditioning for MMA Athletes
 

Touchbutt, anyone?

Touchbutt, anyone?

Why do MMA fighters need strength & conditioning?

To develop physical capabilities that would otherwise be neglected or missed when exclusively performing MMA drills and sparring. 

How does strength training improve performance?

The biggest benefits that come from strength training are increased force production and power, as well as injury prevention. I will be specifically talking about force production and power in a later part. Right now, I'll just dive into injury prevention.

Many muscle injuries come from the inability to decelerate a certain limb, or the inability to tolerate the forces produced when a muscle undergoes an eccentric contraction (EC). An EC happens when an external force is applied to a muscle, while the muscle fibers lengthen. Think of the lowering portion of a bicep curl, the deceleration/ground impact portion of a vertical jump, or the feeling in your quads while walking downhill. As long as we perform full range of motion resistance exercises and progressively overload them, we increase our ability to handle larger magnitudes of forces, especially at longer muscles lengths (where we're most susceptible to injury).

One of the most common injuries in professional sports are hamstring strains. Occurring in athletes from sports such as rugby, football, soccer and any other sport that requires running/sprinting. While the demands of MMA are much different and small strains and nagging injuries are bound to happen from rolling (Brazilian Jiu Jitsu) or sparring (striking), fighters can still learn from the modifiable risk factors involved in hamstring strains that are so prevalent in other sports in order to reduce chances of injury while training. These modifiable risk factors include sub-par functional muscle lengths, poor posture, strength and muscle imbalances and muscle inflexibility amongst others. Strength & conditioning practices should revolve around addressing these issues first, before focusing on increasing strength, power and endurance.

Isn't MMA practice enough for conditioning?

Yes and no, it depends on what training plan the head MMA coaches put their fighters through. Unless the head coach is knowledgeable on concepts such as heart rate monitor training, lactate threshold, cardiovascular training methods and periodization, a fighter's conditioning and physical preparation should be overlooked by a high performance coach. Much like how strength training should fill in gaps and address the weaknesses of a fighter, specific-conditioning work must be performed to optimize a fighter's gas tank on fight night.

Without getting too in-depth into the metabolic and endurance demands of MMA (I will cover this later in the series), conditioning must be done at the right intensity, at the right time, with the right amount of rest in order to induce the changes we want in a fighter. 

Strength & Conditioning is useless?

Some MMA coaches don't believe in strength & conditioning outside of the skills training and sparring that fighters already perform. This may stem from stubbornness or undying tradition, I'm not quite sure. There are even elite fighters like George St. Pierre coming out and saying "I don't believe in strength & conditioning... I lift weight for looks". Ironically, GSP is known for being a pioneer in how fighters perform strength & conditioning routines. He was one of the first successful fighters to train in Olympic weightlifting and gymnastics during his fight preparation. I have a feeling these training modalities have contributed to increasing his power development, core stability and movement quality; although I could be wrong.

There is still some truth to what GSP is saying, however. Strength & conditioning should not be prioritized over skills training. A bigger, stronger, and more conditioned fighter does not always win, and we're reminded of that at almost every UFC event. Strength & conditioning is simply a platform and a preparation strategy that allows a fighter's skills to shine and allows them to develop those skills effectively and safely in training.

 

That's it for now. I'm interested in what you think, if you have any questions, opinions or insight, feel free to comment down below or contact me! In the future, I'll be writing about topics such as the metabolic/endurance requirements of MMA, how much hypertrophy and muscle mass plays a role, individualizing training strategies, training over-specificity, nutrition and more!  See you guys in the next part!

PART 2 HERE



An Evidence-Based Approach to Hamstring Strain Injury (2009) by Mathew Prior et al.

Injury rate, mechanism, and risk factors of hamstring strain injuries in sports: A review of the literature (2012) Hui Liu et al.

 


Read More